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Interaction of spiral waves with external fields in excitable media
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The problem of spiral waves interacting with weak external fields in two-dimensional reaction-
diffusion excitable media is considered. The velocity and the angle of the drift of the spiral resulting
from the interaction with the field is calculated analytically. We find that a field coupled to the
fast variable causes the spiral to drift at an angle with respect to the direction of the field, whereas
a field coupled to the slow variable induces a drift parallel to the field. Numerical simulations are
presented that demonstrate a good qualitative agreement with the theory.
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Spiral waves, spontaneously formed from generic ini-
tial conditions, play an important role in the dynamics
of two-dimensional (2D) active media, such as Belousov-
Zhabotinsky reactions [1], cardiac tissues [2], some types
of surface reactions [3], etc. In particular, spiral waves
are responsible for such dangerous cardiac arrhythmias
as fibrillation and ventricular tachycardias [4]. A vast
body of research has been devoted to various methods of
control and consequent annihilation of spiral waves [5-7].
The main approach employed is the application of an ex-
ternal field. The field causes the spiral to drift towards
the boundaries where it is annihilated. Recent studies
[5,8] have revealed a striking phenomenon—the spiral
drifts at a significant angle with respect to the applied
field. This phenomenon is reminiscent of the drift of the
superconducting vortex at some angle to the applied cur-
rent in type-II superconductors under the Lorentz force
(see, e.g., [9]). Although from a theoretical point of view,
one always should expect some nonzero angle of the drift
because the spiral breaks both rotation and translation
invariance of the media, there has been no quantitative
theory relating the angle of the drift to the parameters
of the active media.

The theory of wave propagation in excitable media in
the presence of external fields can be described by the
“reaction-diffusion” equations [10,11]

Bu = eV3u + [f(u,v)/€] — €E, - Vu
0v = geV3v + g(u,v) — 0€eE,, - Vv , (1)

where € < 1 is a small positive parameter; u, v are the
“fast” and “slow” variables, and E,,, E,, their applied ex-
ternal fields (which we suppose to be weak), respectively;
o = D, /D, is the ratio of diffusion coefficients of the two
variables. In this paper we present a theory relating the
angle and the velocity of a spiral’s drift to the parameters
of Eqgs. (1). We consider the case of small fields in order
to be able to calculate the effect of the fields as a pertur-
bation of the isolated spiral wave. Nonlinear effects are
discussed briefly at the end of the paper. The particu-
lar scaling of the applied fields in Egs. (1) is motivated
by the fact that external fields create additional flows of
concentrations u,v and, therefore, should have the same
mobility coeflicients as diffusion flows. We have uncov-
ered two different types of behavior depending on the ra-
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tio E,/E,. For the first case, which we call u controlled,
defined by the condition E,, E, ~ O(1), the spiral drifts
at some nonzero angle to the applied field. For the case
of a dominant slow variable field E,/E, ~ 1/oc > 1
(v-controlled case), the spiral drifts parallel to the field.
Our results are in qualitative and quantitative agreement
with numerical simulations of Egs. (1).

Our solution of the problem is based on a generaliza-
tion of the method [12,13] used in the case of inhomo-
geneous media. The procedure consists of two steps.
In the first step the dynamics of the continuous two-
dimensional active media is reduced to the dynamics
of lines (interfaces) separating excited and quiescent re-
gions. The dynamics of the interfaces is governed by the
Gibbs-Thomson condition (see [10,11]). A special treat-
ment is required in the core region, where the interfaces
come together. The solution is significantly simplified in
the so-called Fife scaling, valid for /3 « 1. Solution of
this problem gives an unperturbed spiral wave, and fixes
the frequency of the spiral’s rotation (for details see [14]).
At the second step, the moving spiral is treated in linear
order in the external field. In principle, linearization can
be avoided but then the calculation becomes very cum-
bersome. Boundedness of the linear response fixes the
spiral’s velocity and the drift angle. We proceed from
the second step, the first step being identical to Ref. [14].

In the presence of the external field E,, the Gibbs-
Thomson equation describing interfacial dynamics [10,11]
is of the form

¢n =c(v) — €k +eng-E, , (2)

where c(v) is the unperturbed interfacial velocity of the
1D case, ¢, is the velocity normal to the interface, k is
the local curvature of the interface, and nj is the inter-
facial outer normal n; « V[0 — 6;(r)], (6,r) are polar
coordinates, 0;(r) is the interfacial angle. The last term
in Eq. (2) describes advection of the interface by the ap-
plied field.

Outside the core (outer region), in the frame corotating

with the interface at frequency w the Fife ansatz [15]
V— v, = /3% ,

t =3¢,

2/3~

T =¢€'°T,

c(vr) = e3¢y, w=¢130, (3)

where ¢, = d—f}:—)lvz,,, [vs and ¢, are constants defined by
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the particular functions f(u,v) and g(u,v) in Egs. 1)],
together with the rescaling of the fields

E,=¢ 3%, , E,=¢ % 3,, (4)

brings Egs. (1) and the interfacial equation (2) to the
form

8wt — wBvE = gt + cAvT — ge, - Vot | (5)
Cn=cvv:t—k+n1'eua (6)
where the “4+” and “—” signs correspond to the
excited and quiescent regions, respectively. g¢¥ =
g[ut(v,),v,]=const. For an interface drifting with ve-
locity c¢q = (cz,cy) and rotating with frequency w, the
normal velocity ¢, and curvature k are given by the ex-
pressions (with “4” and “—” corresponding to the front
and back interfaces, respectively)

et =+ (r80F/\/1+42) +nf -cq,
k* = F [1/(1+97)*?)(dy/dr) F ($/rv/1+92), (7)

where ¥(r) = rdf;/dr and 6% = 05 (r) — 65 (0) — wt +
86%(r) expliwt]+ c.c. The term oAv can be omitted
everywhere except in the core region. It can be seen from
Eq. (4) that the limitation upon the fields E,, E, to be
“small enough” in the Fife limit, in order to consider
them as a small perturbation is that E,, F, < e 2/3.

In the u-controlled case the fields E,, and E, both scale
with o as 09, i.e., E, ~ E, ~ O(1). The term e, - Vv
can then be omitted in the outer region as well as in the
core region.

In the system drifting with velocity cq and rotating
with frequency w, Eq. (5) takes the form

8vE — wBpvt = gF +¢ca- Vu. (8)

To linear order in c4, one may replace v in the right-
hand side of Eq. (8) by the unperturbed solution vo in
the corotating frame v = (—g*/w)[0 — 6 (r)]+ const
with 8 — 0y = Aby = 2mg~ /(9™ — g*). Without loss of
generality, we may choose g7 — g~ = 1. In our rotating
frame, the perturbation induced by the steady drift is
explicitly time dependent and can be written in the form

cq - Vg = —C‘g—:ﬁ% exp{ijwt + 0(r) — 61 (0)]}

+c.c. (9)
where C = (c, — icy)/+/w. We have introduced here a

new variable p = \/wr.

Representing, therefore, the solution of Eq. (8) in the
form v = vg + dv exp[iwt]+ c.c., we obtain (according to
[12,13])

sv*(p) = [42(0) + 00— expfitor) - o+ 0)
— (97/w)é0(p) - (10)
where A% are some unknown functions of p.

To make the perturbations dv¥ continuous across the
interfaces, one needs to impose continuity conditions (see
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also [13,14]): v*[6} ()] = v™[6} (p)] and v*[07 ()] =
v~[2m + 07 (p)]. Since vF satisfy unperturbed continu-
ity conditions we obtain after simple algebra the relation
36" = 50~ exp[iAF).

In the corotating frame the normal projection of the
external field oscillates with frequency w. The normal
projection of e, is of the form

nf -e, = £[(—ynE +nf)/V/1+ 9 e,
) i— .
= bus s 7 exp{i[0™ (p) — 67 (0) + wi]}

+c.c., ' (11)

where é, = (eZ — ie¥)/+/w. Expanding v into an unper-
turbed part plus perturbation, ¥ = ¢ + 61, we obtain
from Eq. (7) that perturbations to the interfacial normal
velocity and curvature satisfy the following conditions:
dci = —bc; exp[iAf] and §kt = —8k™ exp[tAf] (with +
and — signs corresponding to the front and back inter-
faces, respectively). This gives us an additional relation

Svf = —dvyettl . (12)

Now, combining the contributions from the exp[iwt]
harmonic of the perturbation, from the linearized equa-
tion (6) we obtain a closed equation for 6% [here we have
used the dc, and dk calculated in Eq. (7), together with

(12)]:

8260% + (2 + pyp — ¥, 60+
GLARRTAR Ak < 2l AN VP EE)

1+ 92
where
F(p) = [(i — ) /20)[C — éu + C(B/p)\/1 + 92]
x exp{il6* - 0*(0)]} (14)
where B=const=1.738, ... is a universal constant coming

from the solution of the unperturbed problem (see for
instance, Refs. [10,16-18]).

Following the lines of Ref. [13] one can solve Eq.
(13) analytically using its explicit homogeneous solu-
tions. One homogeneous solution is given by the trans-
lation eigenmode

x1 = [(i — ¢)/p] explif ] (15)

and the second solution can be obtained via reduction of
order of Eq. (13)

P W
Xz = X1/ dp’—(zpl ) (16)
0 X1

where the Wronskian W (p) = exp(— [¢ dp'p'¥)p™2(1 +
1[)2)3/ 2, These solutions have the following asymptotic
behaviors: x1 — 1/p, x2 — const for p — 0 and X3
is bounded, x2 ~ exp[p3/(3B)] for p > 1. The general
solution of Eq. (13) can be represented in the form

80T = Aixa1 + Aax2 + Z(p) , (17)

where Z(p) is the inhomogeneous solution bounded for
p — oot
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pl
2) = -2 [ diati—v) [\/f—ww ~ ) + B0 exp [ [ prvaer it () - e+(o>1]
0
(18)
oo pl
X2 ’ . 17 17 ) +
- == d i— ——(C —é, +BC}exp|:/ p Ydp" +i[07(p) — 6 0].
2 [ - e -2 0 0% (') — 0% (0)
Z(p) has the following asymptotic behavior as p — 0:
Z(p) = iz(C —&,) + [(6B/2)Inp + 2,)C (19)
and is bounded for large p. For our purpose we need an explicit expression for the constant z;:
= L [ / " dg 4 26" () — e+(0)1] . (20)
\/ + 2 0

21 is a universal model-independent complex constant
and can be calculated numerically. The result is z; =
|z1| exp[in] where |z;| = 0.576 and 7 =~ 0.8002 ~ 0.255.
The constant z; is irrelevant for our analysis.

The constants A, 2 are fixed by the asymptotic condi-
tions at p — oo and at the core p — 0. The perturbative
nature of the general solution (17) requires A, = 0 in
order to rule out divergence of x2 as p — oo. We then
have for the asymptotics of the outer solution at p — 0
[our particular choice of the interfacial angles near origin
is 0%(0) = £A4/2]

86" = (Ay/p) — iA1B — izé,
+C[(iB/2)Inp +iz1 + 23] + O(p) - (21)

where A; = i4; exp(iA6/2). The value of constant A;
can be defined by matching with the inner (core) solution.

The core problem for the case of external field is much
like that discussed in Refs. [13,14]. In order to fix ¢
one has to find the perturbation of the interface 60" in
the core. By virtue of linearity of the core problem, this
perturbation has the outer asymptotic behavior for large
distances (on the core scale) 661 = 4C, both for the case
of small diffusion o and for the diffusionless case (see
[13]). This has to be matched onto the inner asymptotics
of the outer solution (21), which yields ¢ = —i21€4 /7.
On the other hand, the outer asymptotics of the inter-
facial angles in the core should be the same as those in
the outer problem near the origin. This gives us that
arg(y) = A60/2 — w/2. Then, choosing the X axis paral-
lel to the field E, (EY = 0) and using the calculated 2,
we obtain

¢z = (Bul21]/|7]) cos[(A8/2) —n]
ey = (Bulz1|/1]) sin[(A8/2) —n] . (22)

Equations (22) are valid for the case 1/2 < gt < 1
(0 < A@ < ). It follows from the symmetry of the core
solution under gt <+ 1—g¥, that S (g%) = —SF (1—-g™)
and A6 < 2w — Af. This results from the fact that map-
ping g7 — 1 — g7 simply interchanges the roles of the
excited and quiescent regions. We have from Egs. (22)
that the angle ¢ between the drift direction and the field
E, is

$=A70/2—-n = 7|g"|—n. (23)

[
If gt <1/2 (A8 > 7) then ¢ = m — AB/2 —n. Therefore,

¢ lies in the interval —n < ¢ < 7w/2 — 7.

This general calculation of the drift can be illustrated
by the particular case of the small diffusion core, dis-
cussed in Refs. [13,14], where equations for the core prob-
lem have been obtained. One has to perform the so-called
“Bernoff scaling” [14,17,18]: # = ro~1/3, % = vo'/3. The
asymptotic solution of the core problem is given by [13]

86% = 02/3C[(oY/3SE )\ Jwp) + SE + -] . (24)

The asymptotic constants |S*| have previously been
found numerically from the solution of the core problem
13).

[ C]Jomparing Egs. (21) and (24) one can achieve the
necessary matching if the relations A; = 0=1/35;C and
—iz B, = 0_2/35;(:' hold. Matching with the In(p) term
is achieved at higher order in o'/3. Therefore, the drift
is given by the expression

C = —i(0%32:6,/57) . (25)
As argued above, arg(S; ) = A6/2 — w/2. We then have

Cp = 0‘2/362/3(Eu|Z1[/2|S;—|) cos[(A0/2) — 7] ,

¢y = /33 (E,|21|/2/5F]) sin((A0/2) —n] . (26)
/2
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FIG. 1. Angle between the drift and the field E, ver-

sus model parameter gt, obtained in simulations (solid line)
and predicted by theory (dashed line). The parameters
of the simulations according to the model of Ref. [19] are
a=2(1~ gt +b),b=0.01,¢ = 0.002,0 = 0.01, the domain size is
8 X 8, number of the grid points is 121 x 121. The field amplitude

= 0.0038. To the left and to the right of the presented graph is
the onset of the core meander instability. Here the further maximal
error of determination of the angle is 3%.
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FIG. 2. Angle between the drift and the field E, vs diffu-
sion coeflicient o obtained in simulations for the symmetric spiral,
gt = 0.5 (a = 1.02), and asymmetric spiral, gt = 0.55 (a = 0.92),
given by the solid line and the dashed line, respectively. Other
parameters are the same as in Fig. 1.

Let us now turn to the v-controlled case. Then one
has to take into account the term oe, - Vv in Eq. (5), so
that c¢g and C are replaced by

¢ = cq — 023E,, C'=C - g, , (27)
where

E, = o[(E® —iEY)/Jw] ~0(1). (28)
In that case one obtains, matching the outer and the
core solution at first order in o:

¢ =g, , (29)

which means that the drift is always parallel to the field
E, up to terms higher orders in o, with the absolute
value ¢y = 0€2/3E,. This result is in excellent agreement
with the numerical simulations.

We have simulated the problem (1) by the EZ-spiral
package written by Barkley [19] for the model given by
flu,v) = u(u — 1)[u — uen(v)] and g(u,v) = uw— v, where
ugn(v) = (v + b)/a. It is a simple exercise to find g%
for such a model. The result is gt = 1 — a/2 + b and
g~ =gt —1= —a/2+b. We have added an external
field E, to EZ spiral and measured the angle between the
resulting drift and the field as a function of g*. In Fig. 1
the angle given by Eq. (23) is compared to the results of
the simulations. We can see a good qualitative agreement
between the effect of the angle predicted theoretically and
observed in simulations. The small discrepancy is related
presumably to not too small values of €. Further decrease
of € is an extremely expensive project, in terms of CPU
time.

Note that one cannot sweep all of the predicted angle
range, because of the onset of the core meander insta-
bility. It should be remarked that there is as yet no
satisfactory understanding of the core dynamics in the
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FIG. 3. Angle between the drift and the field E,, as a function of
the field amplitude E,,, obtained in simulations for the symmetric
spiral, gt = 0.5 (a = 1.02). Other parameters are the same as in
Fig. 1.

case of small €, o considered herein. Analytical treat-
ments [14] indicate a real instability whereas numerical
simulations show a Hopf bifurcation to meandering [20].
Nevertheless, as our calculation of the drift angle does
not involve any details of the core solution, we expect
it to be reliable, even in the face of our inability to ad-
equately characterize the core dynamics. In particular,
our calculated drift angle is independent of both € and o.
The magnitude of the drift velocity, however, is sensitive
to both these parameters, and is very dependent on the
details of the core. We thus expect that our theory is
only qualitatively correct (see [12,13] for details) for the
drift magnitude.

To confirm the above, we have performed our simula-
tions for different values of 0. We see in Fig. 2 that the
angle almost does not change with o. This justifies that
our results are generic, and essentially independent of the
core, which is the aspect of the solution most sensitive to
the diffusivity of the slow variable.

Obviously, the angle also depends on the amplitude
of the field. Our simulations show that the dependence
of the angle has some tendency to saturate as the field
grows (see Fig. 3). However, above some critical value
of the field the spiral does not exist.

In summary, we have calculated the velocity and the
angle of the drift of the spiral resulting from the inter-
action with the external field. Our results are universal
in the limit of small €¢,0 and do not depend on the par-
ticular characteristics of the excitable media. Numerical
simulations revealed good qualitative agreement for the
angle of the drift. Experimental verification of our results
is encouraged.
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